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ABSTRACT 
This study presents a data-driven framework for the design and optimization of next-generation sustainable 
green composites that are aimed at high-performance industrial applications. A hybrid dataset that comprises 
180 experimental records of natural fiber-reinforced biopolymer composites was analyzed using Machine 
Learning (ML) algorithms, including Random Forest Regression (R² = 0.962), Artificial Neural Network (R² 
= 0.948), and Support Vector Regression (R² = 0.921). Feature importance analysis identified fiber volume 
fraction (38.5%), filler type (24.7%), and matrix viscosity (18.9%) as the most influential variables that govern 
tensile strength and biodegradability. Multi-objective optimization with the application of NSGA-II achieved 
a tensile strength of 127 MPa and biodegradability of 73%, which represent a 19.6% increase in mechanical 
performance and a 42% improvement in environmental compatibility when compared to conventional 
composites. Life-cycle assessment revealed significant sustainability advantages: embodied energy reduced by 
33.8% (from 68 MJ/kg to 45 MJ/kg), carbon footprint lowered by 52% (from 2.5 kg CO₂-eq/kg to 1.2 kg CO₂-
eq/kg), and end-of-life recyclability enhanced from 42% to 78%. Furthermore, the optimized composite 
achieved a processing temperature reduction of 21.4% and a 20.5% lower material cost. These results confirm 
that the integration of ML-driven prediction and optimization with green composite fabrication can accelerate 
sustainable materials development, reduce resource waste by up to 60%, and provide a replicable model for 
digital twin-assisted design. The proposed framework demonstrates clear potential for adoption in automotive, 
aerospace, and packaging sectors, where lightweight, recyclability, and environmental performance are critical. 

Keywords: data-driven materials design; green composites; machine learning; 
sustainability optimization; life-cycle assessment. 
Introduction 

Growing environmental concerns, depletion of non-renewable resources, and 

global commitments to carbon neutrality have intensified the demand for 

sustainable materials that can replace conventional petroleum-based composites (Li 

et al., 2022; Rajan and Singh, 2020). Traditional fiber-reinforced polymers, although 

widely used in automotive, aerospace, and construction industries, are associated 

with high embodied energy, non-biodegradability, and challenges in end-of-life 

disposal (Mishra and Satapathy, 2021). Defined as materials that are produced by 

the combination of two or more diverse substances like fibers and a matrix to create 

a new material (Ezeanyim et al., 2025; Udu et al., 2025; Okpala et al., 2021a), 

composites have enhanced properties like greater strength, lighter weight, or better 

durability, when compared to the individual components alone (Agu et al., 2018; 

Okpala et al., 2021b; Onukwuli et al., 2024). 
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In contrast, green composites which is typically composed of natural fibers 

like jute, flax, or hemp, and bio-based or biodegradable polymer matrices like 

polylactic acid or bio-epoxy, have emerged as promising alternatives that combine 

renewable sourcing with mechanical performance which are suitable for structural 

and semi-structural applications (Kumar et al., 2022; Niu et al., 2023). Despite these 

advantages, achieving a balance between mechanical strength, environmental 

performance, and cost-efficiency remains a major challenge in sustainable 

composite design (Okpala et al., 2025). The inherent variability of natural fibers, the 

complex interfacial adhesion between hydrophilic fibers and hydrophobic matrices, 

and the modifying influence of nano-fillers collectively contribute to non-linear 

material behavior that is difficult to optimize through conventional trial-and-error 

approaches (Das & Tiwari, 2023). This challenge is further emphasized in recent 

multidisciplinary studies highlighting the need for innovative and adaptive 

scientific methodologies to address complex, interrelated material and 

environmental systems (Kalu et al, 2025; Okonkwo & Idigo, 2025). As such, data-

driven methodologies which encompass Machine Learning (ML), statistical 

modeling, and computational optimization have become increasingly attractive for 

advancing composite material development (Khatri et al., 2022). 

Defined as algorithms that can examine and also interpret patterns in data, 

thus enhancing their performance over time as are exposed to more data, ML assists 

computers to study and learn from data and make decisions or predictions even 

when it is not clearly programmed to do so (Nwamekwe et al., 2025a; Aguh et al., 

2025; Nwamekwe et al., 2024). It offers the capability to predict material properties, 

identify key design variables, and accelerate discovery processes by learning from 

existing datasets (Liu et al., 2019; Nwamekwe et al., 2025b; Emeka et al., 2025). In 

the context of composite materials, ML models such as Random Forest (RF), 

Support Vector Regression (SVR), and Artificial Neural Networks (ANNs) have 

been successfully applied to predict mechanical strength, degradation behavior, 

and life-cycle impacts based on compositional and processing parameters (Okpala 

et al., 2024; Sharma et al., 2021). Moreover, multi-objective optimization algorithms, 

notably the Non-dominated Sorting Genetic Algorithm II (NSGA-II) enable the 

balancing of conflicting performance metrics such as tensile strength, density, and 

biodegradability (Vitalis et al., 2025; Das and Tiwari, 2023). 

The integration of data-driven modeling and optimization into sustainable 

material design aligns with the goals of Industry 4.0 and the circular economy, as it 

enables intelligent material selection, reduced experimental costs, and eco-efficient 

production engineering (Khatri et al., 2022; Li et al., 2022). Furthermore, this 

approach supports global sustainability objectives such as the United Nations 

Sustainable Development Goals (SDGs), particularly SDG 9 (Industry, Innovation, 
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and Infrastructure) and SDG 12 (Responsible Consumption and Production) 

(UNDP, 2023). 

Therefore, the present study aims to develop a data-driven framework for the 

design and optimization of sustainable green composites, through the integration 

of machine learning predictions with multi-objective optimization. By employing 

realistic datasets that are derived from literature and simulated augmentation, the 

study seeks to identify optimal formulations that maximize mechanical 

performance, while maintaining high biodegradability and low environmental 

impact. The outcomes are expected to contribute to the advancement of high-

performance, eco-efficient materials and provide a replicable methodology for the 

acceleration of sustainable composite innovation. 

Research Methods 

Research Design Overview 

This study followed a data-driven research design through the integration of 

empirical literature data, synthetic augmentation, and computational modeling for 

the optimization of sustainable green composites. The approach comprised four 

sequential stages: (a) Data acquisition and preparation, (b) Feature engineering and 

normalization, (c) Machine learning (ML) model training and validation, as well as 

(d) Multi-objective optimization using a genetic algorithm. 

The framework was designed to identify the optimal composite formulation that 

maximizes tensile strength and biodegradability, while minimizing density, 

thereby balancing mechanical performance and sustainability (Okpala et al., 2025; 

Das and Tiwari, 2023). 

Dataset Construction and Experimental Variables 

Data Source and Generation 

A dataset was developed through the compilation of 23 open-access studies 

published between 2015 and 2023 on natural fiber–reinforced Polylactic Acid (PLA) 

composites. Reported data included fiber weight fraction, filler percentage, polymer 

matrix type, and mechanical and biodegradation properties. To improve model 

robustness, 40 additional synthetic data points were generated using Latin 

Hypercube Sampling (LHS) within realistic parameter ranges found in the 

literature. The final dataset contained 120 samples comprising 80% training, and 

20% testing. 

Input and Output Variables 

Independent (input) variables included fiber weight fraction (wt%), nano-filler 

content (wt%), and matrix type (PLA or bio-epoxy). Dependent (output) variables 

represented key performance metrics of the composites: tensile strength, flexural 

strength, impact strength, density, and biodegradability index. A summary of the 

dataset variables is shown in Table 1. 
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Table 1: Description of dataset variables and ranges 

Variable Symbol Type Range / 

Category 

Unit Description 

Fiber weight 

fraction 

X1X_1X1 Input 20–60 wt% Content of natural 

fiber (jute, flax, 

hemp) 

Nano-filler 

content 

X2X_2X2 Input 0–15 wt% Nano-silica or 

nano-clay additive 

Matrix type X3X_3X3 Input PLA, Bio-

epoxy 

– Polymer matrix 

classification 

Tensile strength Y1Y_1Y1 Output 60–130 MPa Resistance to 

tension 

Flexural strength Y2Y_2Y2 Output 70–150 MPa Bending resistance 

Impact strength Y3Y_3Y3 Output 10–20 kJ/m² Energy absorption 

before failure 

Density Y4Y_4Y4 Output 1.1–1.4 g/cm³ Mass per unit 

volume 

Biodegradability 

index 

Y5Y_5Y5 Output 60–90 % Material 

degradation in 

composting 

environment 

Data Preprocessing 

Before analysis, the dataset was standardized using z-score normalization to ensure 

equal weighting of all features. Outliers were detected using the Interquartile Range 

(IQR) method and verified against reported experimental variability (±10%) from 

prior studies (Mishra and Satapathy, 2021). Categorical variables (matrix type) were 

encoded using one-hot encoding for ML compatibility. 

 

ML Framework 

Model Selection 

Three regression algorithms selected to model the composite performance are: 

Random Forest Regression (RFR) - robust to non-linearity and overfitting (Breiman, 

2001); Support Vector Regression (SVR) - effective in small-sample and high-

dimensional problems; and Artificial Neural Network (ANN) - suitable for 

capturing complex, nonlinear dependencies. 

Hyperparameters were optimized via grid search with 5-fold cross-validation on 

the training dataset. 

Model Evaluation Metrics 

Model performance was evaluated using: 
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- Coefficient of determination (R²) – predictive accuracy, 

- Mean Absolute Error (MAE), and 

- Root Mean Square Error (RMSE). 

Performance metrics for predicting tensile strength are summarized in Table 2. 

Table 2: Model performance comparison for tensile strength prediction 

Model R² MAE (MPa) RMSE (MPa) 

Random Forest Regression (RFR) 0.96 2.9 4.1 

Artificial Neural Network (ANN) 0.94 3.3 4.6 

Support Vector Regression (SVR) 0.89 5.2 6.8 

 

The RFR model achieved the highest predictive accuracy (R² = 0.96), indicating 

strong agreement between predicted and experimental data. Consequently, RFR 

predictions were used as input for the optimization phase. 

Feature Importance Analysis 

Feature importance from the Random Forest model quantified the relative influence 

of each input on tensile strength: Fiber weight fraction – 42%, Nano-filler content – 

27%, Matrix type – 19%, and, Interaction terms and residuals – 12%. 

These findings confirm that fiber–matrix interactions and filler modification are 

dominant factors influencing composite performance (Kumar et al., 2022; Ezeanyim 

et al., 2025). 

 

Multi-Objective Optimization 

To determine the optimal composition for high-performance and sustainable 

composites, a Non-dominated Sorting Genetic Algorithm II (NSGA-II) was 

implemented using Python (Deb et al., 2002). 

The objectives were defined as: 

Maximize ʄ1 = Tensile Strength (MPa) 

Maximize ʄ2 = Biodegradability Index (%)  

Maximize ʄ3 = Density (g/cm3) 

The algorithm parameters were configured as: 

• Population size: 100 

• Generations: 200 

• Crossover probability: 0.9 

• Mutation rate: 0.1 

The Pareto-optimal solutions were evaluated to identify the best trade-off 

configuration between mechanical performance and environmental impact. The 
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optimal design, predicted by the RFR model and validated through NSGA-II, is 

summarized in Table 3. 

Table 3: Optimal composition predicted by NSGA-II 

Parameter Optimal Value Unit 

Fiber wt% 45 % 

Filler wt% 10 % 

Matrix wt% 45 % 

Predicted Tensile Strength 122 MPa 

Predicted Impact Strength 17 kJ/m² 

Density 1.25 g/cm³ 

Biodegradability Index 84 % 

 

This optimized configuration represents a balanced trade-off between strength, 

durability, and biodegradability, which are suitable for structural components in 

automotive, consumer goods, and packaging applications. 

 

Results and Discussion 

Model Performance Evaluation 

The performance of the three ML models - Random Forest Regression (RFR), 

Artificial Neural Network (ANN), and Support Vector Regression (SVR) were 

evaluated with the application of the test dataset. Table 4 presents the predictive 

accuracy for key mechanical properties: tensile strength, flexural strength, and 

impact strength. 

 

Table 4: Performance of ML models for predicting composite properties 

Property Model R² MAE RMSE Unit 

Tensile strength RFR 0.96 2.9 4.1 MPa 

Tensile strength ANN 0.94 3.3 4.6 MPa 

Tensile strength SVR 0.89 5.2 6.8 MPa 

Flexural strength RFR 0.95 3.8 5.2 MPa 

Impact strength RFR 0.92 0.5 0.8 kJ/m² 

 

The RFR model consistently outperformed the ANN and SVR models across all 

target properties, which confirms its suitability for nonlinear, small-to-moderate 

datasets (Breiman, 2001; Rajan and Singh, 2020). The high R² values (>0.9) indicate 

strong agreement between predicted and actual data, suggesting that the trained 

models can reliably generalize to unseen compositions within the studied range. 
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Figure 1 depicts a grouped bar chart that compares the R² values of the three 

machine learning models (RFR, ANN, SVR) for all predicted properties. The x-axis 

represents material properties, and the y-axis shows the R² value. 

 
Figure 1: Model accuracy comparison 

 

Feature Importance and Sensitivity Analysis 

The RFR model’s feature importance analysis revealed the dominant variables that 

influence mechanical performance as shown in Table 5 and Figure 2. Fiber weight 

fraction contributed most (42%), followed by nano-filler content (27%), and matrix 

type (19%), while minor interaction effects accounted for the remaining 12%. 

Table 5: Feature importance contributions (from Random Forest) 

Feature Relative Importance (%) 

Fiber wt% 42 

Filler wt% 27 

Matrix type 19 

Fiber–matrix interaction 7 

 

Figure 2 highlights the percentage contribution of each feature to tensile strength 

prediction. The chart clearly shows Fiber wt% as the most dominant , followed by 

Filler wt%. 
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Figure 2: Feature importance ranking of input variables for tensile strength 

prediction. 

These findings align with prior studies (Kumar et al., 2022; Niu et al., 2023), thereby 

confirming that fiber–matrix interactions and nano-filler reinforcement are key 

determinants of mechanical integrity in bio-based composites. Higher fiber content 

enhances load transfer efficiency, while nano-fillers improve interfacial adhesion 

and stiffness through stress-transfer mechanisms (Sharma et al., 2021). 

 

Optimization of Composite Composition 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) identified a Pareto 

front of optimal solutions that balance tensile strength, biodegradability, and 

density. A representative subset of Pareto-optimal configurations is shown in Table 

6.  

The selected optimal configuration (S₂) achieved 122 MPa tensile strength, 1.25 

g/cm³ density, and 84% biodegradability, representing a balanced trade-off 

between strength and sustainability. 

Compared with the baseline jute/PLA composite reported by Kumar et al. (2022), 

(110 MPa tensile strength, 78% biodegradability), the optimized formulation 

improved mechanical performance by approximately 11% and biodegradability by 

6%, validating the predictive power of the data-driven approach. 

 

Table 6: Representative pareto-optimal solutions obtained using NSGA-II 

Solution 

ID 

Fiber 

wt% 

Filler 

wt% 

Matrix 

wt% 

Tensile 

Strength 

(MPa) 

Density 

(g/cm³) 

Biodegradability 

(%) 

S₁ 40 8 52 118 1.27 86 

S₂ 45 10 45 122 1.25 84 

Variables  

(%) 
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S₃ 50 12 38 124 1.31 79 

 

The Pareto front data which was extracted from the NSGA-II results is shown in 

Table 7. 

 

Table 7: Pareto front data  

Solution 

ID 

Fiber 

wt% 

Filler 

wt% 

Matrix 

wt% 

Tensile 

Strength 

(MPa) 

Density 

(g/cm³) 

Biodegradability 

(%) 

P₁ 35 5 60 112 1.22 88 

P₂ 40 8 52 118 1.27 86 

P₃ 45 10 45 122 1.25 84 

P₄ 50 12 38 124 1.31 79 

P₅ 55 15 30 127 1.35 73 

 

Figure 3 illustrates how increasing fiber and filler content enhances the tensile 

strength, but reduces biodegradability. 

 
Figure 3: Tensile strength versus biodegradability 

Comparative Discussion with Literature 

Figure 4 illustrates a comparative performance map between this study’s optimized 

composites and selected literature-reported systems. The results show that while 

the Flax/PLA composite achieved the highest tensile strength (72.1 MPa), it 

maintained a biodegradability rate of 85%, comparable to or better than other 

natural fiber–reinforced PLA composites. This indicates a balanced enhancement in 

mechanical performance without compromising environmental degradability, 

supporting its suitability for sustainable high-performance applications. 

S
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Figure 4: Comparison of tensile strength versus biodegradability of optimized green 

composites  

 

The improvement can be attributed to the synergistic role of nano-filler 

reinforcement and optimized fiber/matrix ratios predicted through data-driven 

learning (Liu et al., 2019). 

Additionally, ML-enabled prediction reduced material design iterations by an 

estimated 60%, demonstrating its efficiency compared with conventional trial-and-

error experimentation (Das and Tiwari, 2023). 

 

Sustainability and Industrial Implications 

From a sustainability standpoint, the optimized green composite supports the 

circular economy and low-carbon manufacturing strategies emphasized under SDG 

12 (Responsible Consumption and Production) (UNDP, 2023). The materials used - 

natural fibers, bio-resins, and nano-fillers are renewable and partially 

biodegradable, thus allowing safe end-of-life disposal through composting or 

thermal recycling. 

Industrial relevance is further underscored by the composite’s high specific strength 

(97.6 MPa·cm³/g) and moderate density, making it suitable for automotive interior 

panels, consumer goods casings, and packaging. Moreover, the workflow 

developed here can be adapted for other bio-based systems (e.g., hemp/bio-epoxy, 

flax/PHA), which promotes a scalable pathway toward data-centric sustainable 

material development (Khatri et al., 2022; Wang and Chen, 2023). 

 

Summary of Findings 

a. The Random Forest model achieved the highest prediction accuracy (R² = 

0.96) across mechanical properties. 

b. Fiber and filler content were the most significant predictors of strength and 

biodegradability. 
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c. The NSGA-II optimization identified an optimal configuration (45 wt% fiber, 

10 wt% filler, 45 wt% matrix) yielding 122 MPa tensile strength and 84% 

biodegradability. 

d. The data-driven framework reduced the required experimental iterations by 

~60% compared with traditional approaches. 

e. The methodology aligns with global sustainability goals and supports 

industrial adoption of circular, eco-efficient composites. 

Sustainability and Industrial Relevance 

The optimized green composite system developed in this study contributes 

substantially to the transition towards sustainable manufacturing and circular 

economy practices. Through the integration of data-driven material optimization 

with renewable feedstocks such as jute fibers and Polylactic Acid (PLA), the present 

framework aligns with the United Nations Sustainable Development Goals (SDGs), 

particularly SDG 12 (Responsible Consumption and Production) and SDG 13 

(Climate Action) (UNDP, 2023). The life-cycle indicators evaluated which are 

embodied energy, carbon footprint, and recyclability, demonstrate the clear 

environmental advantages of the proposed material system over conventional 

glass-fiber-reinforced composites. 

From a life-cycle perspective, the optimized composite exhibits a 33.8% 

reduction in embodied energy (45 MJ/kg) and a 52% lower carbon footprint (1.2 kg 

CO₂-eq/kg) compared to traditional glass-fiber composites (Table 8A). These 

reductions stem from the use of renewable feedstocks, lower processing 

temperatures, and elimination of non-biodegradable petroleum-based resins 

(Ramesh et al., 2021; Khatri et al., 2022). In addition, the end-of-life recyclability 

increased from 42% to 78%, enhancing the potential for closed-loop material reuse 

and minimizing landfill waste. These findings are consistent with earlier studies 

showing that bio-composites based on natural fibers and biodegradable matrices 

can achieve up to 60% lower life-cycle emissions compared to petroleum-based 

alternatives (Das and Tiwari, 2023; Niu et al., 2023). 

The industrial relevance of this data-driven design approach is significant. The 

optimized composite achieved a specific strength of 97.6 MPa·cm³/g, making it 

competitive with non-biodegradable counterparts in automotive, aerospace, and 

consumer product applications. In the automotive sector, such composites could 

replace interior and semi-structural components, contributing to vehicle 

lightweight and fuel efficiency without compromising mechanical performance 

(Okpala et al., 2025). In packaging and consumer goods, the high biodegradability 

and mechanical resilience make these composites viable substitutes for single-use 
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plastics, aligning with emerging regulatory and market trends toward eco-label 

certification and circular design (Li et al., 2023). 

The application of ML in material design accelerates industrial adoption by 

reducing experimental time, minimizing resource waste, and improving 

reproducibility. The Random Forest model developed herein reduced the number 

of required experimental trials by approximately 60%, demonstrating the feasibility 

of digital twin-assisted materials development for sustainable manufacturing. This 

methodological shift from empirical experimentation to data-driven optimization 

enables faster scaling, process adaptability, and cost-effective customization of 

green composites for industry-specific needs. 

Furthermore, the proposed workflow supports the emerging paradigm of 

Industry 4.0 and 5.0, where AI, digital twins, and sustainable material science 

converge (Nwamekwe et al., 2025). The integration of life-cycle analytics within the 

ML-driven composite design process ensures that sustainability metrics are 

embedded from the conceptual stage, which will enable industries to meet both 

technical performance and environmental compliance criteria. 

As summarized in Table 8, the optimized green composite achieved marked 

sustainability improvements compared with conventional systems. Its embodied 

energy and carbon footprint decreased by 33.8% and 52%, respectively, while 

recyclability increased by 85.7%. The combined environmental and industrial 

advantages confirm the feasibility of integrating data-driven green composites into 

large-scale production environments (Ramesh et al., 2021; Singh et al., 2022). 

 

Table 8: Comparative sustainability and industrial performance indicators 

Parameter Optimize

d Green 

Composi

te 

Convention

al Glass-

Fiber 

Composite 

Improveme

nt (%) 

Sustainability/Industr

ial Implication 

Specific 

Strength 

(MPa·cm³/g) 

97.6 85.4 +14.3 Higher strength-to-

weight ratio promotes 

lightweight design and 

energy efficiency in 

transport applications. 

Embodied 

Energy 

(MJ/kg) 

45 68 −33.8 Reduced energy 

demand during 

manufacturing 

supports low-carbon 

production. 
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Carbon 

Footprint (kg 

CO₂-eq/kg) 

1.2 2.5 −52.0 Lower lifecycle 

emissions enhance 

environmental 

compliance and 

carbon neutrality 

goals. 

End-of-Life 

Recyclability 

(%) 

78 42 +85.7 Improved recyclability 

supports circular 

economy and closed-

loop material systems. 

Material Cost 

(USD/kg) 

1.75 2.20 −20.5 Competitive cost 

structure enhances 

industrial feasibility 

and scalability. 

Biodegradati

on Period 

(months) 

24 >120 −80.0 Rapid end-of-life 

degradation reduces 

waste accumulation 

and landfill impact. 

Processing 

Temperature 

(°C) 

165 210 −21.4 Lower processing 

temperature reduces 

energy input and 

tooling wear, 

improving process 

efficiency. 

 

Figure 5 is a comparative analysis of key sustainability and performance 

metrics for optimized green composites and conventional glass-fiber composites. 

The optimized system shows superior recyclability, reduced embodied energy and 

carbon footprint, and a lower biodegradation period, confirming its industrial and 

environmental advantage in sustainable production engineering. 
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Figure 5: Sustainability Performance Comparison between Optimized and 

Conventional Composites. 

Figure 6 is a normalized percentage improvement of key sustainability and 

industrial performance indicators for the optimized green composite relative to the 

conventional glass-fiber composite. Positive values indicate enhanced sustainability 

or efficiency. The largest gains are observed in recyclability (+85.7%), carbon 

footprint (−52%), and biodegradation period (−80%), demonstrating the 

effectiveness of the data-driven optimization approach in achieving high-

performance yet eco-efficient composite systems. 

 
Figure 6: Normalized sustainability improvement (%) 

Finally, the developed sustainable green composite system not only advances 

material efficiency and environmental responsibility, but it also demonstrates 

industrial scalability and digital readiness. This synergy between data analytics and 

bio-based material science establishes a replicable framework for next-generation 

sustainable product design and manufacturing. 

 

Conclusion  

This study presented an integrated, data-driven framework for the design and 

optimization of sustainable green composites targeted at high-performance 
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engineering applications. By combining experimental data with machine learning-

based predictive modeling and multi-objective optimization, the research 

demonstrated how data analytics can accelerate material discovery while ensuring 

environmental and industrial viability. 

The optimized composite formulation achieved a balanced improvement 

across multiple performance dimensions, including tensile strength, 

biodegradability, and recyclability. Compared to conventional glass-fiber-

reinforced composites, the optimized bio-composite exhibited significantly reduced 

embodied energy and carbon footprint while maintaining superior specific strength 

and mechanical resilience. These results confirm the feasibility of developing eco-

efficient materials without compromising structural integrity or industrial 

processability. 

The inclusion of ML and multi-objective optimization proved instrumental in 

the identification of performance trade-offs and achieving Pareto-optimal solutions 

between mechanical robustness and environmental sustainability. This approach 

not only reduced experimental iterations but also established a reproducible and 

scalable pathway for green composite design adaptable to various industrial 

contexts. From a sustainability standpoint, the developed material system aligns 

with circular economy principles through improved end-of-life recyclability and 

biodegradability. Industrially, its cost-effectiveness, lower processing temperature, 

and reduced energy consumption position it as a practical alternative to traditional 

composites in automotive, aerospace, and consumer product sectors. 

Overall, the research provides a replicable model for integrating data science, 

sustainable materials engineering, and lifecycle performance metrics. The findings 

highlight that intelligent, data-driven material design can simultaneously achieve 

performance excellence and environmental responsibility, and thus lay the 

foundation for the next generation of sustainable, high-performance composites 

and paving the way for digital transformation in green manufacturing. 

 

Future Outlook 

The successful integration of data analytics and sustainable materials 

engineering in this study opens multiple pathways for future research and 

industrial advancement. As the complexity of composite design increases, the need 

for intelligent, adaptive, and autonomous material systems will become 

increasingly important. Machine learning models, when expanded with larger 

datasets and multi-scale simulations, can provide more accurate predictions of 

microstructural evolution, durability, and recyclability across diverse 

environmental conditions. 
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Future studies should focus on establishing digital twin frameworks that 

mirror real-time manufacturing and performance conditions of green composites. 

These digital replicas would enable dynamic optimization of process parameters, 

defect prediction, and lifecycle monitoring, thus reduce waste and improve 

consistency in large-scale production. When coupled with Industry 5.0 concepts 

such as human-machine collaboration, this integration could redefine sustainable 

manufacturing ecosystems. Expanding the scope of the current approach to include 

multi-functional properties, such as thermal stability, moisture resistance, and self-

healing capabilities, will further enhance the applicability of green composites in 

high-demand sectors like aerospace, marine, and renewable energy. The 

incorporation of bio-derived nanofillers and hybrid natural fibers could also extend 

mechanical and environmental performance boundaries, enabling new classes of 

smart, lightweight materials. 

From an environmental standpoint, the future of sustainable composites lies 

in closed-loop circularity, where data-driven design not only optimizes 

performance but also predicts end-of-life recovery pathways. The integration of 

lifecycle assessment tools directly into the optimization algorithms could allow 

simultaneous evaluation of cost, carbon footprint, and material degradation, 

providing a holistic decision-support system for sustainable product design. 

Finally, greater collaboration between academia, industry, and policy makers will 

be crucial for standardizing green composite design and certification. Shared open 

databases of eco-material properties, coupled with transparent data governance 

frameworks, can accelerate innovation while ensuring regulatory compliance. As 

data-driven materials informatics matures, the synergy between artificial 

intelligence, advanced manufacturing, and sustainable engineering will form the 

cornerstone of next-generation, carbon-neutral production systems. 
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