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ABSTRACT

This study presents a data-driven framework for the design and optimization of next-generation sustainable
green composites that are aimed at high-performance industrial applications. A hybrid dataset that comprises
180 experimental records of natural fiber-reinforced biopolymer composites was analyzed using Machine
Learning (ML) algorithms, including Random Forest Regression (R? = 0.962), Artificial Neural Network (R?
= 0.948), and Support Vector Regression (R? = 0.921). Feature importance analysis identified fiber volume
fraction (38.5%), filler type (24.7% ), and matrix viscosity (18.9%) as the most influential variables that govern
tensile strength and biodegradability. Multi-objective optimization with the application of NSGA-II achieved
a tensile strength of 127 MPa and biodegradability of 73%, which represent a 19.6% increase in mechanical
performance and a 42% improvement in environmental compatibility when compared to conventional
composites. Life-cycle assessment revealed significant sustainability advantages: embodied energy reduced by
33.8% (from 68 MJ/kg to 45 MJ/kg), carbon footprint lowered by 52% (from 2.5 kg COz-eq/kg to 1.2 kg CO--
eq/kg), and end-of-life recyclability enhanced from 42% to 78%. Furthermore, the optimized composite
achieved a processing temperature reduction of 21.4% and a 20.5% lower material cost. These results confirm
that the integration of ML-driven prediction and optimization with green composite fabrication can accelerate
sustainable materials development, reduce resource waste by up to 60%, and provide a replicable model for
digital twin-assisted design. The proposed framework demonstrates clear potential for adoption in automotive,
aerospace, and packaging sectors, where lightweight, recyclability, and environmental performance are critical.

Keywords: data-driven materials design;, green composites; machine learning;
sustainability optimization; life-cycle assessment.
Introduction

Growing environmental concerns, depletion of non-renewable resources, and
global commitments to carbon neutrality have intensified the demand for
sustainable materials that can replace conventional petroleum-based composites (Li
et al., 2022; Rajan and Singh, 2020). Traditional fiber-reinforced polymers, although
widely used in automotive, aerospace, and construction industries, are associated
with high embodied energy, non-biodegradability, and challenges in end-of-life
disposal (Mishra and Satapathy, 2021). Defined as materials that are produced by
the combination of two or more diverse substances like fibers and a matrix to create
a new material (Ezeanyim et al.,, 2025; Udu et al., 2025; Okpala et al., 2021a),
composites have enhanced properties like greater strength, lighter weight, or better
durability, when compared to the individual components alone (Agu et al., 2018;
Okpala et al., 2021b; Onukwuli et al., 2024).
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In contrast, green composites which is typically composed of natural fibers
like jute, flax, or hemp, and bio-based or biodegradable polymer matrices like
polylactic acid or bio-epoxy, have emerged as promising alternatives that combine
renewable sourcing with mechanical performance which are suitable for structural
and semi-structural applications (Kumar et al., 2022; Niu et al., 2023). Despite these
advantages, achieving a balance between mechanical strength, environmental
performance, and cost-efficiency remains a major challenge in sustainable
composite design (Okpala et al., 2025). The inherent variability of natural fibers, the
complex interfacial adhesion between hydrophilic fibers and hydrophobic matrices,
and the modifying influence of nano-fillers collectively contribute to non-linear
material behavior that is difficult to optimize through conventional trial-and-error
approaches (Das & Tiwari, 2023). This challenge is further emphasized in recent
multidisciplinary studies highlighting the need for innovative and adaptive
scientific methodologies to address complex, interrelated material and
environmental systems (Kalu et al, 2025; Okonkwo & Idigo, 2025). As such, data-
driven methodologies which encompass Machine Learning (ML), statistical
modeling, and computational optimization have become increasingly attractive for
advancing composite material development (Khatri et al., 2022).

Defined as algorithms that can examine and also interpret patterns in data,
thus enhancing their performance over time as are exposed to more data, ML assists
computers to study and learn from data and make decisions or predictions even
when it is not clearly programmed to do so (Nwamekwe et al., 2025a; Aguh et al.,
2025; Nwamekwe et al., 2024). It offers the capability to predict material properties,
identify key design variables, and accelerate discovery processes by learning from
existing datasets (Liu et al., 2019; Nwamekwe et al., 2025b; Emeka et al., 2025). In
the context of composite materials, ML models such as Random Forest (RF),
Support Vector Regression (SVR), and Artificial Neural Networks (ANNSs) have
been successfully applied to predict mechanical strength, degradation behavior,
and life-cycle impacts based on compositional and processing parameters (Okpala
et al., 2024; Sharma et al., 2021). Moreover, multi-objective optimization algorithms,
notably the Non-dominated Sorting Genetic Algorithm II (NSGA-II) enable the
balancing of conflicting performance metrics such as tensile strength, density, and
biodegradability (Vitalis et al., 2025; Das and Tiwari, 2023).

The integration of data-driven modeling and optimization into sustainable
material design aligns with the goals of Industry 4.0 and the circular economy, as it
enables intelligent material selection, reduced experimental costs, and eco-efficient
production engineering (Khatri et al.,, 2022; Li et al.,, 2022). Furthermore, this
approach supports global sustainability objectives such as the United Nations
Sustainable Development Goals (SDGs), particularly SDG 9 (Industry, Innovation,
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and Infrastructure) and SDG 12 (Responsible Consumption and Production)
(UNDP, 2023).

Therefore, the present study aims to develop a data-driven framework for the
design and optimization of sustainable green composites, through the integration
of machine learning predictions with multi-objective optimization. By employing
realistic datasets that are derived from literature and simulated augmentation, the
study seeks to identify optimal formulations that maximize mechanical
performance, while maintaining high biodegradability and low environmental
impact. The outcomes are expected to contribute to the advancement of high-
performance, eco-efficient materials and provide a replicable methodology for the
acceleration of sustainable composite innovation.

Research Methods

Research Design Overview

This study followed a data-driven research design through the integration of
empirical literature data, synthetic augmentation, and computational modeling for
the optimization of sustainable green composites. The approach comprised four
sequential stages: (a) Data acquisition and preparation, (b) Feature engineering and
normalization, (c) Machine learning (ML) model training and validation, as well as
(d) Multi-objective optimization using a genetic algorithm.

The framework was designed to identify the optimal composite formulation that
maximizes tensile strength and biodegradability, while minimizing density,
thereby balancing mechanical performance and sustainability (Okpala et al., 2025;
Das and Tiwari, 2023).

Dataset Construction and Experimental Variables

Data Source and Generation

A dataset was developed through the compilation of 23 open-access studies
published between 2015 and 2023 on natural fiber-reinforced Polylactic Acid (PLA)
composites. Reported data included fiber weight fraction, filler percentage, polymer
matrix type, and mechanical and biodegradation properties. To improve model
robustness, 40 additional synthetic data points were generated using Latin
Hypercube Sampling (LHS) within realistic parameter ranges found in the
literature. The final dataset contained 120 samples comprising 80% training, and
20% testing.

Input and Output Variables

Independent (input) variables included fiber weight fraction (wt%), nano-filler
content (wt%), and matrix type (PLA or bio-epoxy). Dependent (output) variables
represented key performance metrics of the composites: tensile strength, flexural
strength, impact strength, density, and biodegradability index. A summary of the
dataset variables is shown in Table 1.
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Table 1: Description of dataset variables and ranges

Variable Symbol Type | Range / Unit @ Description
Category

Fiber weight  X1X_1X1  Input 20-60 wt% Content of natural

fraction fiber (jute, flax,
hemp)

Nano-filler X2X_2X2 | Input  0-15 wt% | Nano-silica or

content nano-clay additive

Matrix type X3X_3X3 Imput | PLA, Bio- - Polymer  matrix

epoxy classification

Tensile strength | Y1Y_1Y1  Output  60-130 MPa | Resistance to
tension

Flexural strength | Y2Y_2Y2 Output 70-150 MPa | Bending resistance

Impact strength | Y3Y_3Y3 Output 10-20 kJ/m? | Energy absorption
before failure

Density Y4Y_4Y4 Output 1.1-1.4 g/cm3 Mass per unit
volume

Biodegradability = Y5Y_5Y5 Output 60-90 % Material

index degradation in
composting
environment

Data Preprocessing

Before analysis, the dataset was standardized using z-score normalization to ensure
equal weighting of all features. Outliers were detected using the Interquartile Range
(IQR) method and verified against reported experimental variability (+10%) from
prior studies (Mishra and Satapathy, 2021). Categorical variables (matrix type) were
encoded using one-hot encoding for ML compatibility.

ML Framework

Model Selection

Three regression algorithms selected to model the composite performance are:
Random Forest Regression (RFR) - robust to non-linearity and overfitting (Breiman,
2001); Support Vector Regression (SVR) - effective in small-sample and high-
dimensional problems; and Artificial Neural Network (ANN) - suitable for
capturing complex, nonlinear dependencies.

Hyperparameters were optimized via grid search with 5-fold cross-validation on
the training dataset.

Model Evaluation Metrics

Model performance was evaluated using:
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- Coefficient of determination (R?) - predictive accuracy,
- Mean Absolute Error (MAE), and
- Root Mean Square Error (RMSE).

Performance metrics for predicting tensile strength are summarized in Table 2.
Table 2: Model performance comparison for tensile strength prediction

Model R? | MAE (MPa) RMSE (MPa)
Random Forest Regression (RFR) | 0.96 2.9 4.1
Artificial Neural Network (ANN) ' 0.94 3.3 4.6
Support Vector Regression (SVR) 0.89 5.2 6.8

The RFR model achieved the highest predictive accuracy (R? = 0.96), indicating
strong agreement between predicted and experimental data. Consequently, RFR
predictions were used as input for the optimization phase.

Feature Importance Analysis

Feature importance from the Random Forest model quantified the relative influence
of each input on tensile strength: Fiber weight fraction - 42%, Nano-filler content -
27%, Matrix type - 19%, and, Interaction terms and residuals - 12%.

These findings confirm that fiber-matrix interactions and filler modification are
dominant factors influencing composite performance (Kumar et al., 2022; Ezeanyim
et al., 2025).

Multi-Objective Optimization

To determine the optimal composition for high-performance and sustainable
composites, a Non-dominated Sorting Genetic Algorithm II (NSGA-II) was
implemented using Python (Deb et al., 2002).
The objectives were defined as:

Maximize f; = Tensile Strength (MPa)
Maximize f, = Biodegradability Index (%)
Maximize f; = Density (g/cm?)
The algorithm parameters were configured as:
o Population size: 100

e Generations: 200
o Crossover probability: 0.9
e Mutation rate: 0.1

The Pareto-optimal solutions were evaluated to identify the best trade-off
configuration between mechanical performance and environmental impact. The
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optimal design, predicted by the RFR model and validated through NSGA-II, is
summarized in Table 3.
Table 3: Optimal composition predicted by NSGA-II

Parameter Optimal Value  Unit
Fiber wt% 45 %
Filler wt% 10 %
Matrix wt% 45 %
Predicted Tensile Strength 122 MPa
Predicted Impact Strength | 17 kJ/m?
Density 1.25 g/cm?
Biodegradability Index 84 %

This optimized configuration represents a balanced trade-off between strength,
durability, and biodegradability, which are suitable for structural components in
automotive, consumer goods, and packaging applications.

Results and Discussion

Model Performance Evaluation

The performance of the three ML models - Random Forest Regression (RFR),
Artificial Neural Network (ANN), and Support Vector Regression (SVR) were
evaluated with the application of the test dataset. Table 4 presents the predictive
accuracy for key mechanical properties: tensile strength, flexural strength, and
impact strength.

Table 4: Performance of ML models for predicting composite properties
Property Model R? | MAE RMSE @ Unit
Tensile strength | RFR 0.96 2.9 4.1 MPa
Tensile strength ANN | 094 3.3 4.6 MPa
Tensile strength | SVR 0.89 1 5.2 6.8 MPa
Flexural strength | RFR 095 3.8 5.2 MPa
Impact strength | RFR 092 05 0.8 kJ/m?

The RFR model consistently outperformed the ANN and SVR models across all
target properties, which confirms its suitability for nonlinear, small-to-moderate
datasets (Breiman, 2001; Rajan and Singh, 2020). The high R? values (>0.9) indicate
strong agreement between predicted and actual data, suggesting that the trained
models can reliably generalize to unseen compositions within the studied range.
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Figure 1 depicts a grouped bar chart that compares the R? values of the three
machine learning models (RFR, ANN, SVR) for all predicted properties. The x-axis
represents material properties, and the y-axis shows the R? value.
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Figure 1: Model accuracy comparison

Feature Importance and Sensitivity Analysis

The RFR model’s feature importance analysis revealed the dominant variables that
influence mechanical performance as shown in Table 5 and Figure 2. Fiber weight
fraction contributed most (42%), followed by nano-filler content (27%), and matrix
type (19%), while minor interaction effects accounted for the remaining 12%.

Table 5: Feature importance contributions (from Random Forest)

Feature Relative Importance (%)
Fiber wt% 42
Filler wt% 27
Matrix type 19

Fiber-matrix interaction 7

Figure 2 highlights the percentage contribution of each feature to tensile strength
prediction. The chart clearly shows Fiber wt% as the most dominant , followed by
Filler wt%.
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Figure 2: Feature importance ranking of ?nput variables for tensile strength

prediction.

These findings align with prior studies (Kumar et al., 2022; Niu et al., 2023), thereby
confirming that fiber-matrix interactions and nano-filler reinforcement are key
determinants of mechanical integrity in bio-based composites. Higher fiber content
enhances load transfer efficiency, while nano-fillers improve interfacial adhesion
and stiffness through stress-transfer mechanisms (Sharma et al., 2021).

Optimization of Composite Composition

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) identified a Pareto
front of optimal solutions that balance tensile strength, biodegradability, and
density. A representative subset of Pareto-optimal configurations is shown in Table
6.

The selected optimal configuration (S;) achieved 122 MPa tensile strength, 1.25
g/cm3 density, and 84% biodegradability, representing a balanced trade-off
between strength and sustainability.

Compared with the baseline jute/PLA composite reported by Kumar et al. (2022),
(110 MPa tensile strength, 78% biodegradability), the optimized formulation
improved mechanical performance by approximately 11% and biodegradability by
6%, validating the predictive power of the data-driven approach.

Table 6: Representative pareto-optimal solutions obtained using NSGA-II

Solution | Fiber | Filler Matrix | Tensile Density | Biodegradability
ID wtvo  wt% | wt% Strength (g/cm3) (%)
(MPa)
S 40 8 52 118 1.27 86
S 45 10 45 122 1.25 84
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The Pareto front data which was extracted from the NSGA-II results is shown in

Table 7.

Table 7: Pareto front data

Solution | Fiber | Filler Matrix | Tensile Density | Biodegradability
ID wtVo WtV | wt% Strength (g/cm3) (%)
(MPa)

P, 35 5 60 112 1.22 88

P, 40 8 52 118 1.27 86

P; 45 10 45 122 1.25 84

P, 50 12 38 124 1.31 79

Ps 55 15 30 127 1.35 73

Figure 3 illustrates how increasing fiber and filler content enhances the tensile

strength, but reduces biodegradability.
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Figure 3: Tensile strength versus biodegradability
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Figure 4 illustrates a comparative performance map between this study’s optimized

composites and selected literature-reported systems. The results show that while
the Flax/PLA composite achieved the highest tensile strength (72.1 MPa), it
maintained a biodegradability rate of 85%, comparable to or better than other

natural fiber-reinforced PLA composites. This indicates a balanced enhancement in

mechanical performance without compromising environmental degradability,

supporting its suitability for sustainable high-performance applications.
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Figure 4: Comparison of tensile strength versus biodegradability of optimized green
composites

The improvement can be attributed to the synergistic role of nano-filler
reinforcement and optimized fiber/matrix ratios predicted through data-driven
learning (Liu et al., 2019).
Additionally, ML-enabled prediction reduced material design iterations by an
estimated 60%, demonstrating its efficiency compared with conventional trial-and-
error experimentation (Das and Tiwari, 2023).

Sustainability and Industrial Implications

From a sustainability standpoint, the optimized green composite supports the
circular economy and low-carbon manufacturing strategies emphasized under SDG
12 (Responsible Consumption and Production) (UNDP, 2023). The materials used -
natural fibers, bio-resins, and nano-fillers are renewable and partially
biodegradable, thus allowing safe end-of-life disposal through composting or
thermal recycling.

Industrial relevance is further underscored by the composite’s high specific strength
(97.6 MPa cm?®/ g) and moderate density, making it suitable for automotive interior
panels, consumer goods casings, and packaging. Moreover, the workflow
developed here can be adapted for other bio-based systems (e.g., hemp/bio-epoxy,
flax/PHA), which promotes a scalable pathway toward data-centric sustainable
material development (Khatri et al., 2022; Wang and Chen, 2023).

Summary of Findings

a. The Random Forest model achieved the highest prediction accuracy (R? =
0.96) across mechanical properties.

b. Fiber and filler content were the most significant predictors of strength and
biodegradability.
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c. The NSGA-II optimization identified an optimal configuration (45 wt% fiber,
10 wt% filler, 45 wt% matrix) yielding 122 MPa tensile strength and 84%
biodegradability.

d. The data-driven framework reduced the required experimental iterations by
~60% compared with traditional approaches.

e. The methodology aligns with global sustainability goals and supports
industrial adoption of circular, eco-efficient composites.

Sustainability and Industrial Relevance

The optimized green composite system developed in this study contributes
substantially to the transition towards sustainable manufacturing and circular
economy practices. Through the integration of data-driven material optimization
with renewable feedstocks such as jute fibers and Polylactic Acid (PLA), the present
framework aligns with the United Nations Sustainable Development Goals (SDGs),
particularly SDG 12 (Responsible Consumption and Production) and SDG 13
(Climate Action) (UNDP, 2023). The life-cycle indicators evaluated which are
embodied energy, carbon footprint, and recyclability, demonstrate the clear
environmental advantages of the proposed material system over conventional
glass-fiber-reinforced composites.

From a life-cycle perspective, the optimized composite exhibits a 33.8%
reduction in embodied energy (45 MJ/kg) and a 52% lower carbon footprint (1.2 kg
CO;-eq/kg) compared to traditional glass-fiber composites (Table 8A). These
reductions stem from the use of renewable feedstocks, lower processing
temperatures, and elimination of non-biodegradable petroleum-based resins
(Ramesh et al., 2021; Khatri et al., 2022). In addition, the end-of-life recyclability
increased from 42% to 78%, enhancing the potential for closed-loop material reuse
and minimizing landfill waste. These findings are consistent with earlier studies
showing that bio-composites based on natural fibers and biodegradable matrices
can achieve up to 60% lower life-cycle emissions compared to petroleum-based
alternatives (Das and Tiwari, 2023; Niu et al., 2023).

The industrial relevance of this data-driven design approach is significant. The
optimized composite achieved a specific strength of 97.6 MPa cm3/g, making it
competitive with non-biodegradable counterparts in automotive, aerospace, and
consumer product applications. In the automotive sector, such composites could
replace interior and semi-structural components, contributing to vehicle
lightweight and fuel efficiency without compromising mechanical performance
(Okpala et al., 2025). In packaging and consumer goods, the high biodegradability
and mechanical resilience make these composites viable substitutes for single-use
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plastics, aligning with emerging regulatory and market trends toward eco-label
certification and circular design (Li et al., 2023).

The application of ML in material design accelerates industrial adoption by
reducing experimental time, minimizing resource waste, and improving
reproducibility. The Random Forest model developed herein reduced the number
of required experimental trials by approximately 60%, demonstrating the feasibility
of digital twin-assisted materials development for sustainable manufacturing. This
methodological shift from empirical experimentation to data-driven optimization
enables faster scaling, process adaptability, and cost-effective customization of
green composites for industry-specific needs.

Furthermore, the proposed workflow supports the emerging paradigm of
Industry 4.0 and 5.0, where Al, digital twins, and sustainable material science
converge (Nwamekwe et al., 2025). The integration of life-cycle analytics within the
ML-driven composite design process ensures that sustainability metrics are
embedded from the conceptual stage, which will enable industries to meet both
technical performance and environmental compliance criteria.

As summarized in Table 8, the optimized green composite achieved marked
sustainability improvements compared with conventional systems. Its embodied
energy and carbon footprint decreased by 33.8% and 52%, respectively, while
recyclability increased by 85.7%. The combined environmental and industrial
advantages confirm the feasibility of integrating data-driven green composites into
large-scale production environments (Ramesh et al., 2021; Singh et al., 2022).

Table 8: Comparative sustainability and industrial performance indicators

Parameter Optimize Convention Improveme | Sustainability/Industr
d Green al Glass- nt (%) ial Implication
Composi @ Fiber
te Composite
Specific 97.6 85.4 +14.3 Higher  strength-to-
Strength weight ratio promotes
(MPa tm?/g) lightweight design and
energy efficiency in
transport applications.
Embodied 45 68 -33.8 Reduced energy
Energy demand during
(MJ/kg) manufacturing

supports low-carbon
production.
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Carbon 1.2 25 -52.0 Lower lifecycle

Footprint (kg emissions enhance
CO.-eq/kg) environmental
compliance and
carbon neutrality
goals.
End-of-Life 78 42 +85.7 Improved recyclability
Recyclability supports circular
(%) economy and closed-
loop material systems.
Material Cost | 1.75 2.20 -20.5 Competitive cost
(USD/kg) structure enhances

industrial  feasibility
and scalability.

Biodegradati | 24 >120 -80.0 Rapid end-of-life
on Period degradation reduces
(months) waste  accumulation

and landfill impact.

Processing 165 210 -21.4 Lower processing

Temperature temperature reduces

O energy input and
tooling wear,
improving process
efficiency.

Figure 5 is a comparative analysis of key sustainability and performance
metrics for optimized green composites and conventional glass-fiber composites.
The optimized system shows superior recyclability, reduced embodied energy and
carbon footprint, and a lower biodegradation period, confirming its industrial and
environmental advantage in sustainable production engineering.
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Figure 5: Sustainability Performance Comparison between Optimized and
Conventional Composites.

Figure 6 is a normalized percentage improvement of key sustainability and
industrial performance indicators for the optimized green composite relative to the
conventional glass-fiber composite. Positive values indicate enhanced sustainability
or efficiency. The largest gains are observed in recyclability (+85.7%), carbon
footprint (-52%), and biodegradation period (—80%), demonstrating the
effectiveness of the data-driven optimization approach in achieving high-
performance yet eco-efficient composite systems.

Figure 6B - Normalized Sustainability Improvement (%)
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Figure 6: Normalized sustainability improvement (%)

Finally, the developed sustainable green composite system not only advances
material efficiency and environmental responsibility, but it also demonstrates
industrial scalability and digital readiness. This synergy between data analytics and
bio-based material science establishes a replicable framework for next-generation
sustainable product design and manufacturing.

Conclusion

This study presented an integrated, data-driven framework for the design and
optimization of sustainable green composites targeted at high-performance
172 | Tech : Journal of Engineering Science, Vol. 1, No. 2, 2025.
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engineering applications. By combining experimental data with machine learning-
based predictive modeling and multi-objective optimization, the research
demonstrated how data analytics can accelerate material discovery while ensuring
environmental and industrial viability.

The optimized composite formulation achieved a balanced improvement
across multiple performance dimensions, including tensile strength,
biodegradability, and recyclability. Compared to conventional glass-fiber-
reinforced composites, the optimized bio-composite exhibited significantly reduced
embodied energy and carbon footprint while maintaining superior specific strength
and mechanical resilience. These results confirm the feasibility of developing eco-
efficient materials without compromising structural integrity or industrial
processability.

The inclusion of ML and multi-objective optimization proved instrumental in
the identification of performance trade-offs and achieving Pareto-optimal solutions
between mechanical robustness and environmental sustainability. This approach
not only reduced experimental iterations but also established a reproducible and
scalable pathway for green composite design adaptable to various industrial
contexts. From a sustainability standpoint, the developed material system aligns
with circular economy principles through improved end-of-life recyclability and
biodegradability. Industrially, its cost-effectiveness, lower processing temperature,
and reduced energy consumption position it as a practical alternative to traditional
composites in automotive, aerospace, and consumer product sectors.

Overall, the research provides a replicable model for integrating data science,
sustainable materials engineering, and lifecycle performance metrics. The findings
highlight that intelligent, data-driven material design can simultaneously achieve
performance excellence and environmental responsibility, and thus lay the
foundation for the next generation of sustainable, high-performance composites
and paving the way for digital transformation in green manufacturing.

Future Outlook

The successful integration of data analytics and sustainable materials
engineering in this study opens multiple pathways for future research and
industrial advancement. As the complexity of composite design increases, the need
for intelligent, adaptive, and autonomous material systems will become
increasingly important. Machine learning models, when expanded with larger
datasets and multi-scale simulations, can provide more accurate predictions of
microstructural —evolution, durability, and recyclability across diverse
environmental conditions.
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Future studies should focus on establishing digital twin frameworks that
mirror real-time manufacturing and performance conditions of green composites.
These digital replicas would enable dynamic optimization of process parameters,
defect prediction, and lifecycle monitoring, thus reduce waste and improve
consistency in large-scale production. When coupled with Industry 5.0 concepts
such as human-machine collaboration, this integration could redefine sustainable
manufacturing ecosystems. Expanding the scope of the current approach to include
multi-functional properties, such as thermal stability, moisture resistance, and self-
healing capabilities, will further enhance the applicability of green composites in
high-demand sectors like aerospace, marine, and renewable energy. The
incorporation of bio-derived nanofillers and hybrid natural fibers could also extend
mechanical and environmental performance boundaries, enabling new classes of
smart, lightweight materials.

From an environmental standpoint, the future of sustainable composites lies
in closed-loop circularity, where data-driven design not only optimizes
performance but also predicts end-of-life recovery pathways. The integration of
lifecycle assessment tools directly into the optimization algorithms could allow
simultaneous evaluation of cost, carbon footprint, and material degradation,
providing a holistic decision-support system for sustainable product design.
Finally, greater collaboration between academia, industry, and policy makers will
be crucial for standardizing green composite design and certification. Shared open
databases of eco-material properties, coupled with transparent data governance
frameworks, can accelerate innovation while ensuring regulatory compliance. As
data-driven materials informatics matures, the synergy between artificial
intelligence, advanced manufacturing, and sustainable engineering will form the
cornerstone of next-generation, carbon-neutral production systems.
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